
Lattice Algorithms:
Design, Analysis and Experiments

Phong Nguyễn
http://www.di.ens.fr/~pnguyen

March 2017

http://www.di.ens.fr/~pnguyen

Warning

Interaction: please ask questions
during my talks; interruptions are
welcome.

Slides will be available online.

If you really want to understand an
algorithm, it is helpful to implement it,
using sage or NTL.

The Ubiquity of Lattices

In mathematics

Algebraic number theory, Algebraic
geometry, Sphere packings, etc.

Fields medals: G. Margulis (1978), E.
Lindenstrauss and S. Smirnov (2010), M.
Bhargava (2014).

Applications in computer science, statistical
physics, etc.

Motivation

Motivation

Many people want convincing security
estimates for lattice-based
cryptosystems (and other post-quantum
cryposystems).

Use numerical challenges as a sanity
check of the state-of-the-art.

NTRU Challenges (2015-)

Method used in
largest records:
Enumeration with BKZ.

Darmstadt Lattice Challenge (2008-)

Method used in
largest records:
Enumeration with BKZ.

Darmstadt SVP Challenge (2010-)

Method used in
largest records?

The SVP Challenges

1

10

100

1000

10000

100000

1000000

126 130 132 134 138 140 142 144 146 148 150

Enumeration RSRNumber of core-days

Dimension

Comparison with RSA Records

The largest SVP-computation is for dim
150 (Jan. 2017): 340,000 core-days ≈ 266
clock cycles.

This is only half RSA-768 = 730,000
core-days ≈ 267 clock cycles.

Goal

Understand the main ideas and
underlying the best lattice algorithms
in practice.

Understand their limitations.

Trends

Imbalance: much more publications on the
design of lattice-based cryptographic
schemes than lattice algorithms.

The literature on lattice algorithms can be
confusing:

Provable ≠ heuristic

Worst-case analysis ≠ typical behaviour

Sometimes, incorrect statements

Summary
Mathematical background

Enumeration

Cylinder pruning

Discrete pruning

Algorithms from Hermite’s constant

LLL and Hermite’s inequality

Block-wise algorithms and Mordell’s inequality

Mordell’s proof of Minkowski’s inequality

Security Estimates

Overview

The biggest distinction among lattice
algorithms is space:

Poly-space algorithms

Exp-space algorithms

Mathematical
Background

What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the
set L(b1,...,bd) of all linear combinations ∑xibi
where xi∈Z, and the bi’s are linearly
independent.

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

Integer Lattices

A (full-rank) integer lattice is any subgroup
L of (Zn,+) s.t. Zn/L is finite.

A lattice is infinite, but lattice crypto
implicitly uses the finite abelian group Zn/L:
it works modulo the lattice L.

O

Lattice Invariants

The dim is the dim of span(L).

The (co-)volume is the volume of any basis
parallelepiped: can be computed in poly-
time. Ex: vol(Zn)=1.

O

The Gaussian Heuristic

The volume measures the density of
lattice points.

For “nice” full-rank lattices L, and “nice”
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)

Volume of the Ball

�(z) =

Z 1

0
x

z�1
e

�x dx

Short Lattice Vectors

Th: Any d-dim lattice L has
exponentially many vectors of norm ≤

Th: In a random d-dim lattice L, all
non-zero vectors have norm ≥

O
��

d
⇥

vol(L)1/d

�
��

d
⇥

vol(L)1/d

O

Hermite’s Constant (1850)

This is the “worst-case” for short
lattice vectors.

Hermite showed the existence of this
constant:

Here, is the minimal norm of a
non-zero lattice vector.

p
�d = maxL

�1(L)

vol(L)1/d

λ1(L)

Facts on Hermite’s Constant

Hermite’s constant is asymptotically linear:

The exact value of the constant is only
known up to dim 8, and in dim 24 [2004].

γn 2/
p
321/3

p
2 81/5 (64/3)1/6641/7

dim n 2 3 4 5 6 7 8 24

2 4

approx 1.16 1.26 1.41 1.52 1.67 1.81 2 4

Ω(n) γn O(n)

Mathematical Goals

Classical setting: the worst case.

Find the exact value of Hermite’s
constant.

New trends: the average case.

Properties of random lattices, developing
results from the 50s.

Properties of random lattice points

Overview of Lattice
Algorithms

Lattice Algorithms

Input = integer matrix, whose rows span
the lattice. Parameters:

Size of basis coefficients

Lattice dimension

Asymptotically:

dim increases

coeff-size polynomial in dim.

Hard Lattice Problems

Since 1996, lattices are very trendy in classical
and quantum complexity theory.

Depending on the dimension d:

NP-hardness

non NP-hardness (NP∩co-NP)

worst-case/average-case reduction

cryptography

subexp-time algorithms

poly-time algorithms

O(1) 1

∞

approx. factor

2
d log log d

log d

d log d

�
d

dO(1)

2
�

d

Generic Lattice Problem
Input: a lattice L and a ball C

Output: decide if L∩C is non-trivial, and if
it is, find a non-trivial point.

Settings

Approx: L∩C has many points. Ex: SIS
and ISIS.

Unique: essentially, L has one non-trivial
point, even though C might be small.

The Shortest Vector Problem (SVP)

Input: a basis of a d-dim lattice L

Output: nonzero v∈L minimizing ||v|| i.e.
||v||=λ1(L)

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

Relaxing SVP

Input: a basis of a d-dim lattice L.

Output: nonzero v∈L such that

Approximate-SVP: ||v||≤f(d) λ1(L) [relative]

Hermite-SVP: ||v||≤g(d) vol(L)1/d [absolute]

The Closest Vector Problem (CVP)

Input: a basis of a lattice L of dim d, and
a target vector t.

Output: v∈L minimizing ||v-t||.

BDD (bounded distance decoding): special
case when t is very close to L.

O

t
v

Insight

The most classical problem is to prove the existence
of short lattice vectors.

All known upper bounds on Hermite’s constant have
an algorithmic analogue:

Hermite’s inequality: the LLL algorithm.

Mordell’s inequality: Blockwise generalizations of LLL.

Mordell’s proof of Minkowski’s inequality: worst-case
to average-case reductions for SIS and sieve
algorithms [BJN14,ADRS15]

Hermite’s
Inequality
and LLL

Hermite’s Inequality

Hermite proved in 1850:

[LLL82] finds in polynomial time a non-zero
lattice vector of norm ≤ (4/3+ε)(d-1)/4vol(L)1/d.
It is an algorithmic version of Hermite’s
inequality.

�d �d�1
2 =

✓
4

3

◆(d�1)/2

Proof of Hermite’s Inequality

Induction over d: obvious for d=1.

Let b1 be a shortest vector of L, and π the
projection over b1

⟘.

Let π(b2) be a shortest vector of π(L).

We can make sure by lifting that:
||b2||2≤ ||π(b2)||2+||b1||2/4 (size-reduction)

On the other hand, ||b1||≤||b2|| and
vol(π(L))=vol(L)/||b1||.

Question

Is the proof constructive?

Does it build a non-zero lattice vector
satisfying Hermite’s inequality:

k~b1k
✓
4

3

◆(d�1)/4

vol(L)1/d

An Algorithmic Proof

Let b1 be a primitive vector of L, and π the
projection over b1

⟘.

Find recursively π(b2)∈π(L) satisfying
Hermite’s inequality.

Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

If ||b2|| < ||b1||, swap(b1, b2) and restart,
otherwise stop.

An Algorithmic Proof

This algorithm will terminate and output a
non-zero lattice vector satisfying Hermite’s
inequality:

But it may not be efficient: LLL does
better by strengthening the test
||b2|| < ||b1||.

k~b1k
✓
4

3

◆(d�1)/4

vol(L)1/d

Recursive LLL

Input: (b1,b2,…,bd) basis of L and ε>0.

LLL-reduce (π(b2),…,π(bd)) where π is the
projection over b1

⟘.

Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

If ||b2|| ≤ (1-ε)||b1||, swap(b1, b2) and
restart, otherwise stop.

Hermite’s inequality and LLL are based
on two key ideas:

Projection

Lifting projected vectors aka size-
reduction.

Take Away

LLL in Practice

1773

1850

1982

The Magic of LLL

One of the main reasons behind the
popularity of LLL is that it performs
“much better” than what the worst-
case bounds suggest, especially in low
dimension.

This is another example of worst-case
vs. “average-case”.

LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 is tight in the
worst case: but this is only for worst-case
bases of certain lattices.

Experimentally, 4/3+ε ≈ 1.33 can be replaced by
a smaller constant ≈ 1.08, for any lattice, by
randomizing the input basis.

But there is no good explanation for this
phenomenon, and no known formula for the
experimental constant ≈ 1.08.

Illustration

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 20 40 60 80 100 120 140 160

H
er

m
ite

 F
ac

to
r

dimension

LLL
bound

Log(Hermite Factor)

theoretical worst-case bound

experimental value

Random Bases

There is no natural probability space over the
infinite set of bases.

Folklore: generate a « random » unimodular
matrix and multiply by a fixed basis. But
distribution not so good.

Better method:

Generate say n+20 random long lattice points

Extract a basis, e.g. using LLL.

Random LLL

Surprisingly, [KiVe16] showed that
most LLL bases of a random lattice
have a ||b1|| close to the worst case.
Note: in fixed dimension, the number
of LLL bases can be bounded,
independently of the lattice.

This means that LLL biases the output
distribution.

Open problem

Take a random integer lattice L.

Let B be the Hermite normal form of L, or
a « random » basis from the discrete
Gaussian distribution.

Is is true that with overwhelming
probability, after LLL-reducing B,
||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?

Mordell’s
Inequality

and
Blockwise
Algorithms

Divide and Conquer

LLL is based on a local reduction in dim 2.

Blockwise algorithms find shorter vectors
than LLL by using an « exact » SVP-
subroutine in low dim k called blocksize.

Even if the subroutine takes exponential
time in k, this is poly in d if k=log d.

Mordell’s Inequality

If we show the existence of very short
lattice vectors in dim k, can we prove
the existence of very short lattice
vectors in dim d > k?

[Mordell1944]’s inequality generalizes
Hermite’s inequality:

p
�d p

�k
(d�1)/(k�1)

�1(L)
p
�k

(d�1)/(k�1)
vol(L)1/d

Approximation Algorithms for SVP

Related to upper bounds on Hermite’s constant,
i.e. proving the existence of short lattice
vectors.

[LLL82] corresponds to [Hermite1850]’s
inequality.

Blockwise algorithms [Schnorr87, GHKN06,
GamaN08,MiWa16] are related to

⇥L⇥ �
�

4
3

⇥(d�1)/4

vol(L)1/d =
⇤

�2
d�1vol(L)1/d

⇥L⇥ � ⇤�k
(d�1)/(k�1)vol(L)1/d

Achieving Mordell’s Inequality

All blockwise algorithms reaching Mordell’s
inequality use duality, which provides a
different way of reducing the dimension.

Let v be a non-zero vector in the dual
lattice Lx.

Then L∩v⟘ is a lattice of dimension d-1.

What is BKZ?

Among all blockwise algorithms, BKZ is
the simplest, and seems to be the best
in practice, though its bound is a bit
worse than Mordell’s inequality.

Blockwise algorithms have different
worst-case bounds, but in high
blocksize, there may not be much
differences in practice.

How BKZ Works
BKZ repeatedly calls the k-dim SVP-
subroutine to ensure that the first vector in
each block is the first minimum.

b1
b2
b3

 k=4

k-block

Description of BKZ

LLL-reduce the basis

i = 1

While some block is not reduced

Find the shortest vector in the k-block
starting at index i.

If it is shorter than bi* : insert the new
vector and run LLL to obtain a new
basis.

Output of BKZ

A basis output by BKZ is such that:

It is LLL-reduced

For each i, bi* is a (or near-)
shortest vector in the k-block
(πi(bi),πi(bi+1),..., πi(bmin(d,i+k-1)))

Algorithms
from

Minkowski’s
Inequality

Short Lattice Vectors:
Minkowski’s Inequality

[Minkowski]: Any d-dim lattice L has
at least one non-zero vector of norm
≤

This is Minkowski’s inequality on
Hermite’s constant:

p
�d 2

v1/dd

= 2
�(1 + d

2)
1/d

p
⇡

p
d

2

�(1 + d/2)1/dp
⇡

covol(L)

1/d
p
d covol(L)

1/d

Four Proofs of
Minkowski’s Inequality

Blichfeldt’s proof: «continuous» pigeon-hole
principle.

Minkowski’s original proof: sphere packings.

Siegel’s proof: Poisson summation.

Mordell’s proof: pigeon-hole principle.

Mordell’s
Proof
(1933)

Remember Blichfeldt’s Proof

The short lattice vector is some u-v
where u,v∈F for a well-chosen convex
(infinite) set F.

Mordell’s proof uses a finite F.

Mordell’s Proof (1933)

For q∈N, let Ḹ=q-1L then [Ḹ:L]=qd.
Among >qd points v1,…,vm in Ḹ, ∃i≠j s.t. vi-vj∈L.

There are enough points in a large ball of radius r
(r is close to Minkowski’s bound in L, but large for Ḹ)

We obtain a short non-zero point in L: norm ≤ 2r.

Key Point

Mordell proved the existence of short lattice
vectors by using the existence of short
vectors in a special class of higher-
dimensional integer lattices.

Let distinct v1,…,vm ∈Ḹ=q-1L.

Consider the integer lattice L’ formed by
all (x1,…,xm)∈Zm s.t. ∑ixivi∈L.

If m>qd, λ1(L’)≤√2.

An Algorithm From
Mordell’s Proof

Mordell’s proof gives an (inefficient) algorithm:

Need to generate >qd lattice points in Ḹ.

Among these exponentially many lattice points,
find a difference in L, possibly by exhaustive
search.

Both steps are expensive.

[BGJ14] and [ADRS15] are more efficient
randomized variants of Mordell’s algorithm:
sampling over Ḹ may allow to sample over L.

Sieve algorithms [AKS01,ADRS15]

Initially, generate long random vectors.

Using sieving, reduce iteratively the « average »
norm of the distribution.

After a while, the shortest vector can be
extracted: the running time is 2O(d).

[ADRS15] uses the discrete Gaussian distribution
and Ḹ=L/2.

[BGJ14] is somewhat a more efficient heuristic
version of [ADRS15], by using a pool of vectors.

Wishful Thinking

To apply the pigeon-hole principle, we
need an exponential number m of lattice
vectors in Ḹ.

Can we get away with a small polynomial
number m and make the algorithm
efficient? (unlike [BGJ14] and [ADRS15])

Maybe if we could find short vectors in
certain higher-dimensional random lattices.

Worst-case to Average-case
Reductions

from Mordell’s Proof

The SIS Problem (1996):
Small Integer Solutions

Let (G,+) be a finite Abelian group: G=(Z/qZ)n
in [Ajtai96]. View G as a Z-module.

Pick g1,...,gm uniformly at random from G.

Goal: Find short (x1,...,xm)∈Zm s.t. Σi xi gi = 0,
e.g. ||x|| ≤ m (#G)1/m.

This is essentially finding a short vector in a
(uniform) random lattice of Lm(G) = { lattices
L⊆Zm s.t. Zm/L ∼ G }.

Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.

Goal: Find short x=(x1,...,xm)∈Zm
s.t. Σi xi gi ≡ 0 (mod q).

Worst-case to Average-case
 Reduction

[Ajtai96]: If one can efficiently solve SIS
for G=(Z/qnZ)n on the average, then one
can efficiently find short vectors in every
n-dim lattice.

[GINX16]: This can be generalized to any
sequence (Gn) of finite abelian groups,
provided that #Gn is sufficiently large
≥nΩ(max(n,rank(G))) and m too. Ex: (Z/2Z)n is not.

Overlattices and Groups

If L is n-dim, Ḹ=q-1L and G=(Z/qZ)n then Ḹ/L ≃ G.

There is an exact sequence:

L=Kerφ where φis efficiently computable.

Let v1,...,vm∈Ḹ and define g1,...,gm∈G by gi=φ(vi).

If Σi xi gi = 0 for (x1,...,xm)∈Zm then Σi xi vi ∈ L.

0 �! L
1�! L̄

'�! G �! 0

Fourier Analysis

Fourier analysis shows that if v1,...,vm∈Ḹ are
chosen from a suitable (short) distribution,
gi=φ(vi) has uniform distribution over G.

Any probability mass function f over Ḹ
s.t. for any x∈Ḹ, ∑y∈Lf(x+y) ≈ 1/#G.
Ex: discrete Gaussian distribution.

This is a key step: transforming a worst-
case into an average-case.

Worst-to-average Reduction
from Mordell’s Proof

Sample short v1,...,vm∈Ḹ from a suitable
distribution, so that gi=φ(vi) has uniform

distrib. over G=(Z/qZ)n

Call the SIS-oracle on (g1,...,gm) to find a
short x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0 in G,
i.e. Σi xi vi ∈ L.

Return Σi xi vi ∈ L.

Generalized SIS Reduction

The SIS reduction is based on this crucial
fact: If B is a reduced basis of a lattice L,
then q-1B is a reduced basis of the
overlattice Ḹ=q-1L.

But if G is an arbitrary finite Abelian
group, we need to find a reduced basis of
some overlattice Ḹ⊇L s.t. Ḹ/L ≃ G, so that
we can sample short vectors in Ḹ.

Structural Lattice Reduction

In classical lattice reduction, we try to find a
good basis of a given lattice.

In structural lattice reduction [GINX16], given
a lattice L and a (sufficiently large) finite
Abelian group G, we find a good basis of some
overlattice Ḹ s.t. Ḹ/L ≃ G.

Directly using backwards-LLL.

Or by reduction to the case L=Zn.

Easy Cases

If G=(Z/qZ)n, any basis B of a full-rank
lattice L in Zn can be transformed into a
basis q-1B of Ḹ=q-1L, which is q=#G1/n times
shorter.

If G=Zn/L, the canonical basis of Ḹ = Zn is
a short basis, typically #G1/n times
shorter than a short basis of L.

LWE:
A Dual Worst-case

to Average-Case
Reduction

Duality

Remember the SIS lattice:

g1,...,gm in some finite Abelian group (G,+)

L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0}

The dual lattice of L is related to the dual group Gv
of (additive) characters of G: morphisms from G to
T=R/Z

Lv={(y1,...,ym)∈Rm s.t. for some s ∈Gv, for all i
yi≣s(gi) (mod 1)}

The LWE Problem:
Learning (a Character) with Errors

Let (G,+) be any finite Abelian group
e.g. G=(Z/qZ)n in [Re05].

Pick g1,...,gm uniformly at random from G.

Pick a random character s in Gv.

Goal: recover s given g1,...,gm and noisy
approximations of s(g1),..., s(gm). Ex: Gaussian
noise.

Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.

Goal: recover s∈Z given g1,...,gm and
randomized approximations of sg1 mod q,...,
sgm mod q.

This is exactly a randomized variant of
Boneh-Venkatesan’s Hidden Number
Problem from CRYPTO ’96.

Hardness of LWE

[Regev05]: If one can efficiently solve LWE
for G=(Z/qnZ)n on the average, then one
can quantum-efficiently find short vectors
in every n-dim lattice.

[GINX16]: This can be generalized to any
sequence (Gn) of finite abelian groups,
provided that #Gn is sufficiently large.

Conclusion

More Inequalities

All known upper bounds on Hermite’s
constant have an algorithmic version.

Is there a polynomial bound on
Hermite’s constant, possibly worse than
Minkowski’s inequality, but with a more
efficient algorithmic version?

Thank you for your attention...

Any question(s)?

References

[GINX16]: « Structural Lattice
Reduction: Generalized Worst-Case to
Average-Case Reductions and
Homomorphic Cryptosystems »,
EUROCRYPT ’16, full version on eprint.

[N10]: « Hermite’s constant and lattice
algorithms » survey in the LLL+25
book.

