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Warning

Interaction: please ask questions 
during my talks; interruptions are 
welcome.

Slides will be available online.

If you really want to understand an 
algorithm, it is helpful to implement it, 
using sage or NTL.



The Ubiquity of Lattices

In mathematics

Algebraic number theory, Algebraic 
geometry, Sphere packings, etc.

Fields medals: G. Margulis (1978), E. 
Lindenstrauss and S. Smirnov (2010), M. 
Bhargava (2014).


Applications in computer science, statistical 
physics, etc.



Motivation



Motivation

Many people want convincing security 
estimates for lattice-based 
cryptosystems (and other post-quantum 
cryposystems).

Use numerical challenges as a sanity 
check of the state-of-the-art.



NTRU Challenges (2015-)

Method used in 
largest records: 
Enumeration with BKZ.



Darmstadt Lattice Challenge (2008-)

Method used in 
largest records: 
Enumeration with BKZ.



Darmstadt SVP Challenge (2010-)

Method used in 
largest records?



The SVP Challenges
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Comparison with RSA Records

The largest SVP-computation is for dim 
150 (Jan. 2017): 340,000 core-days ≈ 266 
clock cycles.

This is only half RSA-768 = 730,000 
core-days ≈ 267 clock cycles.



Goal

Understand the main ideas and 
underlying the best lattice algorithms 
in practice.

Understand their limitations.



Trends

Imbalance: much more publications on the 
design of lattice-based cryptographic 
schemes than lattice algorithms.

The literature on lattice algorithms can be 
confusing:


Provable ≠ heuristic

Worst-case analysis ≠ typical behaviour

Sometimes, incorrect statements



Summary
Mathematical background

Enumeration


Cylinder pruning

Discrete pruning


Algorithms from Hermite’s constant 

LLL and Hermite’s inequality

Block-wise algorithms and Mordell’s inequality

Mordell’s proof of Minkowski’s inequality


Security Estimates




Overview

The biggest distinction among lattice 
algorithms is space:


Poly-space algorithms

Exp-space algorithms



Mathematical 
Background



What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the 
set L(b1,...,bd) of all linear combinations ∑xibi 
where xi∈Z, and the bi’s are linearly 
independent.
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Integer Lattices

A (full-rank) integer lattice is any subgroup 
L of (Zn,+) s.t. Zn/L is finite.


A lattice is infinite, but lattice crypto 
implicitly uses the finite abelian group Zn/L: 
it works modulo the lattice L.

O



Lattice Invariants

The dim is the dim of span(L).

The (co-)volume is the volume of any basis 
parallelepiped: can be computed in poly-
time.  Ex: vol(Zn)=1.

O



The Gaussian Heuristic

The volume measures the density of 
lattice points.

For “nice” full-rank lattices L, and “nice” 
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)
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Short Lattice Vectors

Th: Any d-dim lattice L has 
exponentially many vectors of norm ≤


Th: In a random d-dim lattice L, all 
non-zero vectors have norm ≥
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Hermite’s Constant (1850)

This is the “worst-case” for short 
lattice vectors.

Hermite showed the existence of this 
constant:


Here,       is the minimal norm of a 
non-zero lattice vector.

p
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Facts on Hermite’s Constant

Hermite’s constant is asymptotically linear:


The exact value of the constant is only 
known up to dim 8, and in dim 24 [2004].

γn 2/
p
321/3

p
2 81/5 (64/3)1/6641/7

dim n 2 3 4 5 6 7 8 24

2 4

approx 1.16 1.26 1.41 1.52 1.67 1.81 2 4

Ω(n) γn  O(n)



Mathematical Goals

Classical setting: the worst case.

Find the exact value of Hermite’s 
constant.


New trends: the average case.

Properties of random lattices, developing 
results from the 50s.

Properties of random lattice points



Overview of Lattice 
Algorithms



Lattice Algorithms

Input = integer matrix, whose rows span 
the lattice. Parameters:


Size of basis coefficients

Lattice dimension


Asymptotically:

dim increases

coeff-size polynomial in dim.



Hard Lattice Problems

Since 1996, lattices are very trendy in classical 
and quantum complexity theory. 

Depending on the dimension d:

NP-hardness

non NP-hardness (NP∩co-NP)

worst-case/average-case reduction

cryptography


subexp-time algorithms


poly-time algorithms
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Generic Lattice Problem
Input: a lattice L and a ball C

Output: decide if L∩C is non-trivial, and if 
it is, find a non-trivial point.

Settings


Approx: L∩C has many points. Ex: SIS 
and ISIS.

Unique: essentially, L has one non-trivial 
point, even though C might be small.



The Shortest Vector Problem (SVP)

Input: a basis of a d-dim lattice L

Output: nonzero v∈L minimizing ||v|| i.e.   
||v||=λ1(L)
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Relaxing SVP

Input: a basis of a d-dim lattice L. 

Output: nonzero v∈L such that


Approximate-SVP: ||v||≤f(d) λ1(L)     [relative]


Hermite-SVP:     ||v||≤g(d) vol(L)1/d    [absolute]



The Closest Vector Problem (CVP)

Input: a basis of a lattice L of dim d, and 
a target vector t.

Output: v∈L minimizing ||v-t||.


BDD (bounded distance decoding): special 
case when t is very close to L.

O

t
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Insight

The most classical problem is to prove the existence 
of short lattice vectors.

All known upper bounds on Hermite’s constant have 
an algorithmic analogue:


Hermite’s inequality: the LLL algorithm.

Mordell’s inequality: Blockwise generalizations of LLL.

Mordell’s proof of Minkowski’s inequality: worst-case 
to average-case reductions for SIS and sieve  
algorithms [BJN14,ADRS15]



Hermite’s 
Inequality
and LLL



Hermite’s Inequality

Hermite proved in 1850:


[LLL82] finds in polynomial time a non-zero 
lattice vector of norm ≤ (4/3+ε)(d-1)/4vol(L)1/d. 
It is an algorithmic version of Hermite’s 
inequality.
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Proof of Hermite’s Inequality

Induction over d: obvious for d=1.

Let b1 be a shortest vector of L, and π the 
projection over b1

⟘. 

Let π(b2) be a shortest vector of π(L).

We can make sure by lifting that:                                   
||b2||2≤ ||π(b2)||2+||b1||2/4         (size-reduction)

On the other hand, ||b1||≤||b2|| and 
vol(π(L))=vol(L)/||b1||.



Question

Is the proof constructive?

Does it build a non-zero lattice vector 
satisfying Hermite’s inequality:

k~b1k 
✓
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An Algorithmic Proof

Let b1 be a primitive vector of L, and π the 
projection over b1

⟘. 

Find recursively π(b2)∈π(L) satisfying 
Hermite’s inequality.

Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

If ||b2|| < ||b1||, swap(b1, b2) and restart, 
otherwise stop.



An Algorithmic Proof

This algorithm will terminate and output a 
non-zero lattice vector satisfying Hermite’s 
inequality:


But it may not be efficient: LLL does 
better by strengthening the test                
||b2|| < ||b1||. 
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Recursive LLL

Input: (b1,b2,…,bd) basis of L and ε>0.     


LLL-reduce (π(b2),…,π(bd)) where π is the 
projection over b1

⟘.

Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

If ||b2|| ≤ (1-ε)||b1||, swap(b1, b2) and 
restart, otherwise stop.



Hermite’s inequality and LLL are based 
on two key ideas:


Projection

Lifting projected vectors aka size-
reduction.

Take Away



LLL in Practice
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The Magic of LLL

One of the main reasons behind the 
popularity of LLL is that it performs 
“much better” than what the worst-
case bounds suggest, especially in low 
dimension.

This is another example of worst-case 
vs. “average-case”. 



LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 is tight in the 
worst case: but this is only for worst-case 
bases of certain lattices.

Experimentally, 4/3+ε ≈ 1.33 can be replaced by 
a smaller constant ≈ 1.08, for any lattice, by 
randomizing the input basis.

But there is no good explanation for this 
phenomenon, and no known formula for the 
experimental constant ≈ 1.08.



Illustration
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Random Bases

There is no natural probability space over the 
infinite set of bases.

Folklore: generate a « random » unimodular 
matrix and multiply by a fixed basis. But 
distribution not so good.

Better method:


Generate say n+20 random long lattice points

Extract a basis, e.g. using LLL.



Random LLL

Surprisingly, [KiVe16] showed that 
most LLL bases of a random lattice 
have a ||b1|| close to the worst case. 
Note: in fixed dimension, the number 
of LLL bases can be bounded, 
independently of the lattice.

This means that LLL biases the output 
distribution.



Open problem

Take a random integer lattice L.

Let B be the Hermite normal form of L, or 
a « random » basis from the discrete 
Gaussian distribution.

Is is true that with overwhelming 
probability, after LLL-reducing B,            
||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?



Mordell’s 
Inequality 

and 
Blockwise 
Algorithms



Divide and Conquer

LLL is based on a local reduction in dim 2.

Blockwise algorithms find shorter vectors 
than LLL by using an « exact » SVP-
subroutine in low dim k called blocksize.


Even if the subroutine takes exponential 
time in k, this is poly in d if k=log d.  



Mordell’s Inequality

If we show the existence of very short 
lattice vectors in dim k, can we prove 
the existence of very short lattice 
vectors in dim d > k?

[Mordell1944]’s inequality generalizes 
Hermite’s inequality:
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Approximation Algorithms for SVP

Related to upper bounds on Hermite’s constant, 
i.e. proving the existence of short lattice 
vectors.

[LLL82] corresponds to [Hermite1850]’s 
inequality.


Blockwise algorithms [Schnorr87, GHKN06, 
GamaN08,MiWa16] are related to 
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Achieving Mordell’s Inequality

All blockwise algorithms reaching Mordell’s 
inequality use duality, which provides a 
different way of reducing the dimension.


Let v be a non-zero vector in the dual 
lattice Lx.

Then L∩v⟘ is a lattice of dimension d-1.



What is BKZ?

Among all blockwise algorithms, BKZ is 
the simplest, and seems to be the best 
in practice, though its bound is a bit 
worse than Mordell’s inequality.

Blockwise algorithms have different 
worst-case bounds, but in high 
blocksize, there may not be much 
differences in practice.



How BKZ Works
BKZ repeatedly calls the k-dim SVP-
subroutine to ensure that the first vector in 
each block is the first minimum.

b1
b2
b3

 k=4

k-block



Description of BKZ

LLL-reduce the basis

i = 1

While some block is not reduced


Find the shortest vector in the k-block 
starting at index i.

If it is shorter than bi* : insert the new 
vector and run LLL to obtain a new 
basis.




Output of BKZ

A basis output by BKZ is such that:

It is LLL-reduced

For each i, bi* is a (or near-) 
shortest vector in the k-block 
(πi(bi),πi(bi+1),..., πi(bmin(d,i+k-1))) 



Algorithms 
from 

Minkowski’s 
Inequality



Short Lattice Vectors: 
Minkowski’s Inequality

[Minkowski]: Any d-dim lattice L has 
at least one non-zero vector of norm 
≤ 


This is Minkowski’s inequality on 
Hermite’s constant:
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Four Proofs of  
Minkowski’s Inequality

Blichfeldt’s proof: «continuous» pigeon-hole 
principle.


Minkowski’s original proof: sphere packings.

Siegel’s proof: Poisson summation. 

Mordell’s proof: pigeon-hole principle.



Mordell’s 
Proof
(1933)



Remember Blichfeldt’s Proof

The short lattice vector is some u-v 
where u,v∈F for a well-chosen convex 
(infinite) set F.

Mordell’s proof uses a finite F.



Mordell’s Proof (1933)

For q∈N, let Ḹ=q-1L then [Ḹ:L]=qd.                 
Among >qd points v1,…,vm in Ḹ, ∃i≠j s.t. vi-vj∈L.

There are enough points in a large ball of radius r 
(r is close to Minkowski’s bound in L, but large for Ḹ)


We obtain a short non-zero point in L: norm ≤ 2r.



Key Point

Mordell proved the existence of short lattice 
vectors by using the existence of short 
vectors in a special class of higher-
dimensional integer lattices.


Let distinct v1,…,vm ∈Ḹ=q-1L.

Consider the integer lattice L’ formed by 
all (x1,…,xm)∈Zm s.t. ∑ixivi∈L.


If m>qd, λ1(L’)≤√2.




An Algorithm From  
Mordell’s Proof 

Mordell’s proof gives an (inefficient) algorithm:

Need to generate >qd lattice points in Ḹ.

Among these exponentially many lattice points, 
find a difference in L, possibly by exhaustive 
search.

Both steps are expensive.


[BGJ14] and [ADRS15] are more efficient 
randomized variants of Mordell’s algorithm: 
sampling over Ḹ may allow to sample over L.



Sieve algorithms [AKS01,ADRS15]

Initially, generate long random vectors.

Using sieving, reduce iteratively the « average » 
norm of the distribution.

After a while, the shortest vector can be 
extracted: the running time is 2O(d).

[ADRS15] uses the discrete Gaussian distribution 
and Ḹ=L/2.

[BGJ14] is somewhat a more efficient heuristic 
version of [ADRS15], by using a pool of vectors.



Wishful Thinking

To apply the pigeon-hole principle, we 
need an exponential number m of lattice 
vectors in Ḹ.

Can we get away with a small polynomial 
number m and make the algorithm 
efficient? (unlike [BGJ14] and [ADRS15])


Maybe if we could find short vectors in 
certain higher-dimensional random lattices. 



Worst-case to Average-case 
Reductions

from Mordell’s Proof



The SIS Problem (1996):
Small Integer Solutions

Let (G,+) be a finite Abelian group: G=(Z/qZ)n 
in [Ajtai96]. View G as a Z-module.

Pick g1,...,gm uniformly at random from G.

Goal: Find short (x1,...,xm)∈Zm s.t. Σi xi gi = 0, 
e.g. ||x|| ≤ m (#G)1/m.

This is essentially finding a short vector in a 
(uniform) random lattice of Lm(G) = { lattices 
L⊆Zm s.t. Zm/L ∼ G }. 



Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.     

Goal: Find short x=(x1,...,xm)∈Zm            
s.t. Σi xi gi ≡ 0 (mod q).



Worst-case to Average-case 
 Reduction

[Ajtai96]: If one can efficiently solve SIS  
for G=(Z/qnZ)n on the average, then one 
can efficiently find short vectors in every 
n-dim lattice. 

[GINX16]: This can be generalized to any 
sequence (Gn) of finite abelian groups, 
provided that #Gn is sufficiently large 
≥nΩ(max(n,rank(G))) and m too. Ex: (Z/2Z)n is not.




Overlattices and Groups

If L is n-dim, Ḹ=q-1L and G=(Z/qZ)n then Ḹ/L ≃ G.

There is an exact sequence:


L=Kerφ where φis efficiently computable.


Let v1,...,vm∈Ḹ and define g1,...,gm∈G by gi=φ(vi).


If Σi xi gi = 0 for (x1,...,xm)∈Zm then Σi xi vi ∈ L.

0 �! L
1�! L̄

'�! G �! 0



Fourier Analysis

Fourier analysis shows that if v1,...,vm∈Ḹ are 
chosen from a suitable (short) distribution,                                 
gi=φ(vi) has uniform distribution over G. 


Any probability mass function f over Ḹ 
s.t. for any x∈Ḹ, ∑y∈Lf(x+y) ≈ 1/#G.            
Ex: discrete Gaussian distribution.


This is a key step: transforming a worst-
case into an average-case.



Worst-to-average Reduction 
from Mordell’s Proof

Sample short v1,...,vm∈Ḹ from a suitable 
distribution, so that gi=φ(vi) has uniform 

distrib. over G=(Z/qZ)n 

Call the SIS-oracle on (g1,...,gm) to find a 
short x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0 in G,          
i.e. Σi xi vi ∈ L.


Return Σi xi vi ∈ L.



Generalized SIS Reduction

The SIS reduction is based on this crucial 
fact: If B is a reduced basis of a lattice L, 
then q-1B is a reduced basis of the 
overlattice Ḹ=q-1L.

But if G is an arbitrary finite Abelian 
group, we need to find a reduced basis of 
some overlattice Ḹ⊇L s.t. Ḹ/L ≃ G, so that 
we can sample short vectors in Ḹ.



Structural Lattice Reduction

In classical lattice reduction, we try to find a 
good basis of a given lattice.

In structural lattice reduction [GINX16], given 
a lattice L and a (sufficiently large) finite 
Abelian group G, we find a good basis of some 
overlattice Ḹ s.t. Ḹ/L ≃ G.


Directly using backwards-LLL.

Or by reduction to the case L=Zn.



Easy Cases

If G=(Z/qZ)n, any basis B of a full-rank 
lattice L in Zn can be transformed into a 
basis q-1B of Ḹ=q-1L, which is q=#G1/n times 
shorter. 

If G=Zn/L, the canonical basis of Ḹ = Zn is 
a short basis, typically #G1/n times 
shorter than a short basis of L. 



LWE:
A Dual Worst-case 

to Average-Case 
Reduction



Duality

Remember the SIS lattice:

g1,...,gm in some finite Abelian group (G,+) 

L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0}


The dual lattice of L is related to the dual group Gv 
of (additive) characters of G: morphisms from G to 
T=R/Z


Lv={(y1,...,ym)∈Rm s.t. for some s ∈Gv, for all i 
yi≣s(gi) (mod 1)}



The LWE Problem:               
Learning (a Character) with Errors 

Let (G,+) be any finite Abelian group           
e.g. G=(Z/qZ)n in [Re05].

Pick g1,...,gm uniformly at random from G.

Pick a random character s in Gv.

Goal: recover s given g1,...,gm and noisy 
approximations of s(g1),..., s(gm). Ex: Gaussian 
noise.



Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.     

Goal: recover s∈Z given g1,...,gm and 
randomized approximations of sg1 mod q,..., 
sgm mod q.

This is exactly a randomized variant of 
Boneh-Venkatesan’s Hidden Number 
Problem from CRYPTO ’96.



Hardness of LWE

[Regev05]: If one can efficiently solve LWE 
for G=(Z/qnZ)n on the average, then one 
can quantum-efficiently find short vectors 
in every n-dim lattice. 

[GINX16]: This can be generalized to any 
sequence (Gn) of finite abelian groups, 
provided that #Gn is sufficiently large.



Conclusion



More Inequalities

All known upper bounds on Hermite’s 
constant have an algorithmic version.

Is there a polynomial bound on 
Hermite’s constant, possibly worse than 
Minkowski’s inequality, but with a more 
efficient algorithmic version?



Thank you for your attention... 

Any question(s)?
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